Automata and Formal Languages

Lecture 08

Books

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14767

Benha U	niversity	Staff Se <mark>ଥିଲିନ୍ମତ୍ରଅନ୍ତ</mark> :Ahmed Hassan Ahmed Abu El Af	ta (^{Lo}
Benha University Home	You are in: <u>Home/Courses/Auto</u> Ass. Lect. Ahmed Hassa Automata And Formal	an Ahmed Abu El Atta :: Course Details:	Coost
التسغة العربية		add course edit course	
My C.V.	Course name	Automata and Formal Languages	RG
About	Level	Undergraduate	in
Publications	Last year taught	2018	f
Inlinks(Competition)	Course description	Not Uploaded	
Theses			5
Reports	Course password		
Published books			1
Workshops / Conferences Supervised PhD	Course files	add flies	
Supervised MSc	Course URLs	add URLs	m
Supervised Projects	Course assignments	add assignments	
Language skills	Course Exams &Model Answers	add exams	9
Academic Positions	dimoder Answers		(edit)
Administrative Positions			

Minimum-State DFAs

MINIMUM-STATE DFAS

Agenda

Minimum-State DFAs

≻Example 1

Minimum-State DFAs Algorithm

≻Example 2

≻Example 3

Minimum-State DFAs

One way to try and simplify the DFA for some regular expression is to algebraically transform the regular expression into a simpler one before starting construction of the DFA.

λ + a + aaa* = a*.

*Every regular expression has a unique minimum-state DFA.

How to transform a DFA into a minimum state DFA?

*The key idea is to define two states s and t to be equivalent if for every string w, the transitions

T(s, w) and T(t, w) are either both final or both nonfinal.

Example 1:

States 1 and 2 are equivalent. So for any string w, both T(1, w) and T(2, w) are either both final or both nonfinal.

{0}, {1, 2}, and {3}.

Example 1:

	T	a	b
start	0	1	2
	1	3	1
	2	3	2
final	3	3	3

	T_{\min}	a	Ь
start	{0}	$\{1, 2\}$	$\{1, 2\}$
	$\{1, 2\}$	{3}	$\{1, 2\}$
final	{3 }	{3}	{3}

Minimum-State DFAs

<u>Input</u>: A DFA with set of states S and transition table T. Assume

<u>Output</u>: A minimum-state DFA recognizing the same regular language as the input DFA.

1. Construct the equivalent pairs of states by calculating the descending sequence of sets of pairs $E_0 \supset E_1 \supset \dots$ defined as follows:

2. $E_0 = \{\{s, t\} \mid s \text{ and } t \text{ are distinct and either both states are final or both states are non-final}\}$.

 $E_{i+1} = \{\{s, t\} \mid \{s, t\} \in E_i \text{ and for every } a \in A \text{ either } T(s, a) = T(t, a) \text{ or } \{T(s, a), T(t, a)\} \in E_i\}.$

The computation stops when $E_k = E_{k+1}$ for some index k.

- 3. The start state is the equivalence class containing the start state.
- 4. A final state is any equivalence class containing a final state .

5. The transition table T_{min} for the minimum-state DFA is defined as follows, where [s] denotes the equivalence class containing s and a is any letter: $T_{min}([s], a) = [T(s, a)]$.

End of Algorithm

т	а	b
0	2	1
1	3	1
2	3	2
3	3	4
4	4	4

Т	а	b
0	2	1
1	3	1
2	3	2
3	3	4
4	4	4

 $\mathsf{EO} = \{\{0, 1\}, \{0, 2\}, \{0, 3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}.$

Example 2

 $\{T(s, x), T(t, x)\} \in EO \text{ or } T(s, x) = T(t, x).$ $\{T(0, a), T(1, a)\} = \{2, 3\} \in E0.$ T(0, b)=T(1, b). $\{T(0, a), T(3, a)\} = \{2, 3\} \in E0.$ $T(0, b) = \{1\}$ $T(3, b) = \{4\}$. Eliminate $\{0, 3\}$ $E1 = \{\{0, 1\}, \{0, 2\}, \{1, 2\}\}.$ $E2 = \{\{1, 2\}\}, E3 = E2 = \{\{1, 2\}\}.$

 $\{0\}, \{1, 2\}, \{3\}, \{4\}$

Tmin	а	b
{0}	{1,2}	{1,2}
{1,2}	{3}	{1,2}
{3}	{3}	{4}
{4}	{4}	{4}

compute the minimum-state DFA for the DFA given by the following transition table:

 $\mathsf{EO} = \{\{0, 1\}, \{0, 2\}, \{0, 3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{4, 5\}\}.$

E1 = { {1, 2}, {1, 3}, {2, 3}, {4,5}}. E2 = E1 = { {1, 2}, {1, 3}, {2, 3}, {4,5}}. Three classes {0}, {1,2, 3}, {4,5}

Т	а	b
0	1	2
1	4	1
2	4	3
3	4	3
4	4	5
5	5	5

Three classes {0}, {1,2, 3}, {4,5}

т	а	b
{0}	{1,2,3}	{1,2, 3}
{1,2, 3}	{4,5}	{1,2, 3}
{4,5}	{4,5}	{4,5}

