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Minimum-State DFAS

One way to try and simplify the DFA for some
regular expression is to algebraically
transform the regular expression into a
simpler one before starting construction of
the DFA.

A +a+aaa* =a*.

*Every regular expression has a unique
minimum-state DFA.



How to transform a DFA into a
Mminimum state DFA?

*The key idea is to define two states s and t
to be equivalent if for every string w, the
transitions

T(s, w) and T(t, w) are either both final or
both nonfinal.




Example 1:
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States 1 and 2 are equivalent. So for any string w, both T(1, w)
and T(2, w) are either both final or both nonfinal.

{0}, {1, 2}, and {3}.
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Minimum-State DFAS

Input: A DFA with set of states S and transition table T. Assume

Output: A minimum-state DFA recognizing the same regular language as the input
DFA.

1. Construct the equivalent pairs of states by calculating the
descending sequence of sets of pairs E, D E, J ... defined as follows:

2. E,={{s, t) I sand t are distinct and either both states are final or
both states are non-final}.

E...={{s, t} I {s, t} € E, and for every a € A either T(s, a) = T(t, a) or {T(s, a), T(t,
a)} e E}.

The computation stops when E, = E,,, for some index k.

3. The start state is the equivalence class containing the start state.
4. A final state is any equivalence class containing a final state .

5. The transition table T .. for the minimum-state DFA is defined as
follows, where [s] denotes the equivalence class containing s and a is

ani letter: T‘“H‘HS“ al = ‘T‘s| a||.
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Example 2
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EO = {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}}.
{T(s, x),T(t, x)} € EO or T(s, x) =T(t, x).

{T(0, a),T(1, a)} ={2,3} € EO.
T(0, b)=T(1, b) .

{T(0, a),T(3, a)} ={2,3} € EO.
T(0, b)={1}

T(3, b)={4}. Eliminate { 0,3}
E1l ={{0, 1}, {0, 2}, {1, 2}}.

Ezziil‘Ziii E3=E2:ii1 Zii



Example 2

{0}, {1, 2}, {3}, {4}
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Example 3

compute the minimum-state DFA for the DFA
given by the following transition table:

T lalb
1

-

0 2
1 4 1
2 4 3
3 4 3
4 4 5
5 5 5




Example 3

EO = {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3},{4,5}}.

T2
0 1 2
E1={{1, 2}, {1, 3}, {2, 3},{4,5}}. 1 41
E2 =E1={{1, 2}, {1, 3}, {2, 3},{4,5}}. 2 4 3
Three classes {0}, {1,2, 3},{4,5} 3. 43
5 5 5




Example 3

Three classes {0}, {1,2, 3},{4,5}

T la b
{0} {1,2,3} {1,2, 3}

{1,2, 3} {4,5} {1,2, 3}

{4,5} {4,5} {4,5}






