Automata and Formal Languages
 Lecture 08

Books

PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14767

Minimum-State DFAs

MINIMUM-STATE DFAS

Agenda

$>$ Minimum-State DFAs
>Example 1
>Minimum-State DFAs Algorithm

- Example 2
> Example 3

Minimum-State DFAs

One way to try and simplify the DFA for some regular expression is to algebraically transform the regular expression into a simpler one before starting construction of the DFA.

$$
\lambda+a+\text { aaa* }=a^{*}
$$

*Every regular expression has a unique minimum-state DFA.

How to transform a DFA into a minimum state DFA?

*The key idea is to define two states s and t to be equivalent if for every string w, the transitions
$\mathrm{T}(\mathrm{s}, \mathrm{w})$ and $\mathrm{T}(\mathrm{t}, \mathrm{w})$ are either both final or both nonfinal.

Example 1:

States 1 and 2 are equivalent. So for any string w, both $T(1, w)$ and $T(2, w)$ are either both final or both nonfinal.
$\{0\},\{1,2\}$, and $\{3\}$.

Example 1:

	T	a	b
start	0	1	2
	1	3	1
final	2	3	2
	3	3	3

		$T_{\text {min }}$	a
start			
	$\{0\}$	$\{1,2\}$	$\{1,2\}$
		$\{1,2\}$	$\{3\}$
final	$\{3\}$	$\{3\}$	$\{3\}$

Minimum-State DFAs

Input: A DFA with set of states S and transition table T. Assume
Output: A minimum-state DFA recognizing the same regular language as the input DFA.

1. Construct the equivalent pairs of states by calculating the

 descending sequence of sets of pairs $E_{0} \supset E_{1} \supset$... defined as follows:2. $E_{0}=\{\{s, t) I s$ and t are distinct and either both states are final or both states are non-final\}.
$E_{i+1}=\left\{\{s, t\} \mid\{s, t\} \in E_{i}\right.$ and for every $a \in A$ either $T(s, a)=T(t, a)$ or $\{T(s, a), T(t$, a) $\} \in \mathrm{E}_{\mathrm{i}}$.

The computation stops when $E_{k}=E_{k+1}$ for some index k.
3. The start state is the equivalence class containing the start state.
4. A final state is any equivalence class containing a final state .
5. The transition table $T_{\text {min }}$ for the minimum-state DFA is defined as follows, where [s] denotes the equivalence class containing s and a is any letter: $T_{\min }([s], a)=[T(s, a)]$.

Example 2

T	a	b
$\mathbf{0}$	2	1
1	3	1
2	3	2
3	3	4
4	4	4

Example 2

	a	b
0	2	1
1	3	1
2	3	2
3	3	4
4	4	4

$$
E O=\{\{0,1\},\{0,2\},\{0,3\},\{1,2\},\{1,3\},\{2,3\}\} .
$$

$\{T(s, x), T(t, x)\} \in E O$ or $T(s, x)=T(t, x)$.
$\{T(0, a), T(1, a)\}=\{2,3\} \in E O$.
$\mathrm{T}(0, \mathrm{~b})=\mathrm{T}(1, \mathrm{~b})$.
$\{T(0, a), T(3, a)\}=\{2,3\} \in E O$.
$T(0, b)=\{1\}$
$T(3, b)=\{4\}$. Eliminate $\{0,3\}$
$\mathrm{E} 1=\{\{0,1\},\{0,2\},\{1,2\}\}$.
$E 2=\{\{1,2\}\}$.,
$E 3=E 2=\{\{1,2\}\}$.

Example 2

$\{0\},\{1,2\},\{3\},\{4\}$

Tmin	a	b
$\{0\}$	$\{1,2\}$	$\{1,2\}$
$\{1,2\}$	$\{3\}$	$\{1,2\}$
$\{3\}$	$\{3\}$	$\{4\}$
$\{4\}$	$\{4\}$	$\{4\}$

Example 3

compute the minimum-state DFA for the DFA given by the following transition table:

T	a	b
0	1	2
1	4	1
2	4	3
3	4	3
4	4	5
5	5	5

Example 3

$$
E 0=\{\{0,1\},\{0,2\},\{0,3\},\{1,2\},\{1,3\},\{2,3\},\{4,5\}\} .
$$

$$
\begin{gathered}
E 1=\{\{1,2\},\{1,3\},\{2,3\},\{4,5\}\} . \\
E 2=E 1=\{\{1,2\},\{1,3\},\{2,3\},\{4,5\}\} .
\end{gathered}
$$

Three classes $\{0\},\{1,2,3\},\{4,5\}$

T	a	b
0	1	2
1	4	1
2	4	3
3	4	3
4	4	5
5	5	5

Example 3

Three classes $\{0\},\{1,2,3\},\{4,5\}$

T	a	b
$\{0\}$	$\{1,2,3\}$	$\{1,2,3\}$
$\{1,2,3\}$	$\{4,5\}$	$\{1,2,3\}$
$\{4,5\}$	$\{4,5\}$	$\{4,5\}$

